

Amplicon sequencing

USDA ARS Microbiome Workshop August 29, 2017 Adam R. Rivers

Hello!

The Genomics and Bioinformatics Unit

Brian Scheffler – Research leader and CSIO Stoneville, Mississippi Brian.Scheffler@ars.usda.gov

Adam Rivers – SY Microbiomes and microbial genomes Gainesville, Florida Adam.Rivers@ars.usda.gov

Justin Vaughn – SY Crop genetics Athens, Georgia Justin.Vaughn@ars.usda.gov

Amanda Hulse-Kemp – SY complex and polyploid Genomes Raleigh, North Carolina <u>Amanda.Hulse-Kemp@ars.usda.gov</u>

Learning Objectives

By the end the training you should

- 1. What amplicon sequencing is and the questions it can address
- 2. Know how amplicon samples are processed
- 3. Understand a standard bioinformatics workflow
- 4. Know the types of statistical analyses that are possible with amplicon data

1. What is amplicon sequencing?

Amplicon sequencing

"Amplicon sequencing is the amplification of a particular gene locus from a mixed group of organisms followed by the random sequencing of those targeted amplicons."

Which gene?		Which part?	Which primer?	
Functional	Taxonomic	Full length	Designing	
NifH	16S	Variable	good "universal"	
Cox	18S ITS	region	primers is hard.	
	ITS		hard.	

2.

What can amplicon sequencing answer?

Composition, relative abundance, dynamics

Henry Baker (1753)

I. Mynde Sculp.

Composition

- Resolution can be a challenge
- Different primers can't be compared
- Linking environmental data is hard

Often 16S data is used to select samples of metagenomics At its most basic level amplicon sequencing allows for the taxonomic profiling of communities

Diversity

Alpha, Beta and Gamma diversity (<u>R. H. Whittaker, 1972</u>) are used to describe biodiversity spatially.

-Diversity – a combination of richness and evenness

Alpha – within community diversity
Beta – between community diversity (<u>Anderson et al. 2011</u>)
Gamma – total diversity across a study area

Looking for patterns in communities

Ordination is a dimensionality reduction technique

- Start with Taxa vs sample table
- Calculate a dissimilarity matrix
- Perform ordination, e.g. NMDS, PCA, PCoA,
- Fit environmental variables

PCA from Kemp et al. (2015)

Looking for cooccurrence

What does cooccurrence mean?

Ideally it maps to an ecological networks

But microbial communities are different...

- Direct vs. indirect interaction
- Simplex measurements
- Vastly different sampling efforts
- Artefactual Co-variance

The Covariance problem

Methods to address this: SPIEC-EASI Gniess Bayesian network methods Ecological networks with predictive capability

Types of Microbiome studies

Observational

- Who's thereDiversity
- [C] ~ environmental parameters
- Co-varying OTUs and network structure
- OTUs with significant relationships to gradient

Time series

- Dynamic networks, seasonal succession
- Few studies have the resolution to use ARIMA, etc.
- Repeated measures

Spatial

- Spatial scaling latitudinal diversity has been studied
- Many GIS tools and methods, Kriging not widely used

- Experimental treatments
- Experimental manipulation is becoming more complex
- Pairwise tests are common, some GLM frameworks
- Dealing with normalization, the Simplex and the count distribution are active research areas
- Internal standards are sometimes used

Rarefying, normalizing, oh my!

			DCI 10.1186/440168-017-0237-y	Microbiome
OPEN & ACCESS Freely available online			RESEARCH	Open Access
Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible Paul J. McMurdie, Susan Holmes* Satisfica Department, Stanford University, Starford, California, United States of America		VS.	Normalization and microbial differential abundance strategies depend upon dat characteristics	CrossMark
			Sophie Weiss ¹ , Zhenjiang Zech Xu ² , Shyamal Peddada ³ , Amnon Amir ² , Kyle Bittingef ⁴ , Antonio Gonzalez ² , Catherine Lozupone ⁵ , Jesse R. Zaneveld ⁶ , Yoshiki Vázquez-Baeza ⁷ , Amanda Birmingham ⁸ , Embriette R. Hyde ² and Rob Knight ^{2,79*}	

Rarefaction subsamples without replacement reads from each sample often to the of the smallest library in an experiment sometimes 10-100x.

Alternatively data can be scaled using a normalization method like the Trimmed Mean of Means transformation and modeled using a negative binomial model. **3.** Field to sequencer – the nuts and bolts.

Sample preparation and sequencing

Collect DNA

Amplicon DNA sampling is much more forgiving than RNA sampling.

Collect and store within 1-2 hours

Consider collecting RNA and storing it in RNAlater (Saturated Ammonium Sulfate) at 4°C to sequence the active fraction.

Collect Metadata

"There is no such thing as metadata, everything is data." - Susan Holmes

- Sample collection is the time to record environmental data
- The GSC has created environmental and sequence data standards, <u>MIxS</u>. Use them as a guide for your collections.
- Store environmental data in NCBI or ENA Biosamples databases or Gold database. Do it now, while you still remember what you did. You can link sequence data later.

DNA extraction

Amplicon sequencing is more forgiving than metagenome sequencing.

Target amount of DNA for sequencing: 50-100ng at 3-50 ng/ul in 10-50 ul About 10ng is needed, but who wants to have just the bare minimum of Flair DNA?

Quality:

Length is less important than amplification. PCR test with universal part of sequencing primers. PCR inhibitors like humic acids can be most disruptive.

Internal standards:

For quantitative work control DNA is sometimes added during extraction (Moran et al. 2013).

Amplicon Processing

Sequencing primers

Sequencing primers

Sequenced Fungal ITS2 Region

Sequencing primers

Barcoding

Sequencing

2 96 well plates

illumina MiSeq

PCR with 16 forward primer 24 distinct reverse indexes

- 2x300bp Paired Reads
- 44-50M reads
- ~360,000 tags per sample
- 36 hours

4. Analysis of amplicon data

What to do with all those fastq.gz files.

Amplicon sequencing

Amplicon analysis follows a basic workflow with many possibilities for custom analysis

Why OTU's were used and why Sequence variants are replacing them.

The field is moving this way:

Dada2 - <u>Callahan et al. 2016 (</u>Holmes Lab) Denoise - <u>Amir et al. 2017 (</u>Knight Lab) Unoise2 - <u>Edgar 2016</u>

Taxonomic assignment

Databases

Database	Description	License
Greengenes	A curated database of archaea and bacteria - static since 2013	<u>CC BY-SA 3.0</u>
Silva	The most up-to-date and extensive database of prokaryotes and eukaryotes, several versions	Free academic / Paid commercial license
The RDP database	A large collection of archaeal bacterial and fungal sequences	<u>CC BY-SA 3.0</u>
UNITE	The primary database for fungal ITS and 28S data	Not stated

Classifiers

RDP <u>Classifier</u> – The go-to NB classifier for most people <u>Sintax</u> – Edgar's short Kmer classifier Qiime2's - NB classifier based on Scikit learn

Analysis

The range of analysis preformed after 16S is wide:

- Taxonomic profiling
- Differential abundance analysis
- Diversity measurement
- Network analysis
- Hypothesis testing
- Identifying responsive SV's
- Correlating taxa with environmental conditions
- Understanding how related taxa are.

Is best to jump in and try these yourself in the <u>Amplicon Tutorial</u>

Photo credits

1: DNA - Made By <u>MadeByOliver</u> from Flaticon.com
1: Wheat - Photo by <u>Kai</u> <u>Pilger on Unsplash</u>
4: glacier Photo by <u>Patrícia Cassol</u> <u>Pereira on Unsplash</u>